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Abstract—Internet-scale Distributed Networks (IDNs) are
global distributed systems consisting of a network of hundreds of
thousands of servers located in hundreds of data centers around
the world. A Content Delivery Network (CDN) is an example of
an IDN that delivers content globally through a large network
of servers. IDNs consume large amounts of energy and their
energy requirements are projected to increase significantly in the
future. With carbon emissions from data centers increasing every
year, energy solutions for data centers powered by renewables
are critical for the sustainability of data centers and for the
environment. In this paper, we study the benefits of using solar
energy to green IDNs. We study the impact of leveraging global
data center locations with high solar potential on the number
of solar panels needed to power a CDN. We develop optimal
algorithms and heuristics to help minimize the number of solar
panels provisioned across the CDN, while making it net-zero.
We empirically evaluate our algorithms using extensive load
traces from Akamai’s global CDN and solar data from PVWatts.
Overall, with unrestricted load movement, we can reduce the
number of solar panels by 36%, 68%, and 82% for net-zero
year, month and week respectively. Our results show that our
algorithms can significantly reduce the number of solar panels
we need to power our CDN, thereby making sustainability of
Internet-scale distributed networks more achievable.

I. INTRODUCTION

Modern Internet services are delivered using Internet-scale
Distributed Networks (IDNs) that rely on a global network of
hundreds of thousands of servers located all over the world.
IDNs include cloud and Internet services such as content de-
livery networks (CDNs) that deliver web content, applications,
and streaming media to clients via hundreds of thousands of
servers located in thousands of data center locations through-
out the world. Such large Internet-scale systems consume large
amounts of energy and consequently incur large energy bills.
A research study in 2010 [25] estimated that Google’s energy
consumption was more than 1,120 GWh and their annual
electricity bill exceeded $67M. The environmental impact of
these massive IDNs is also significant and is increasing every
year. Carbon emissions from data centers are growing at the
rate of 15% each year [13].

Given the large energy requirements of IDNs, data centers
that are powered using renewables are gaining traction in the
industry and in the research community. In just six years, Ap-
ple’s renewable energy usage to power its corporate facilities,
stores, and data centers worldwide increased from 16% in
2010, to 96% in 2016 [1]. Apple has committed to powering
all its facilities world-wide with 100% renewable energy. This
year, Google announced that it will achieve the milestone of

purchasing 100% renewable energy to match consumption for
its global operations, including its data centers and offices [2].

There has been a lot of research on making data centers
greener by reducing energy consumption or using energy
generated from renewable sources. Prior work includes energy
reduction using server shutdown or low-power states during
off-peak times [16] [19] [5] [26]. There is also work on
job scheduling based on predicted solar [11] [10] and load
balancing to encourage use of renewable energy [18] [17] [9].
Separately there has been a study [4] for selecting sites for and
provisioning green data centers using a follow-the-renewables
approach. Greening IDNs is now a necessity for sustainable
growth of IDNs, for reducing environmental impact, and for
lowering energy costs for companies. When a system produces
enough green energy to off-set its brown energy use over
a time period, it is said to be ‘net-zero’ over that time
period. While prior work has addressed greening individual
data centers, the problem of greening a large distributed
network of data centers, such as an IDN, using renewables, has
not received much research attention. To address this issue,
we consider the following research question: how can we
efficiently provision solar arrays across a global IDN with
hundreds of locations to make it net-zero? We address this
important question in our study by designing and implement-
ing optimal algorithms and heuristics for provisioning solar
panels, and evaluating those algorithms on a real world IDN
trace and a year’s worth of PVWwatts solar data.

There is a significant difference in solar output between
different locations on the globe, due to differences in latitude,
longitude, and weather. IDNs are deployed as a global network
of data centers and the services they provide are replicated
across those data centers. Proximity of servers to users is the
main reason for global deployment. Therefore, data centers
cannot be deployed only in locations where there is high solar
output throughout the year, they also need to be close to
users. However, replication of services in an IDN allows load
movement between locations to leverage high solar outputs,
and we use this feature extensively to optimize solar panel
provisioning and energy usage
Contributions: Our contributions are listed below:
• Determining Solar Potential for Global IDNs: We

conduct a comprehensive study to analyze the net-zero
solar potential for existing global IDNs with data centers
located in hundreds of locations throughout the world.
In order to reduce the number of panels provisioned, we



leverage global locations that have high solar output. To
determine the number of panels needed to be net-zero,
we move load in an off-line fashion and ensure that the
data center energy demand is matched by solar energy
supply for the duration of the net-zero time period.

• Algorithm Design: We design optimal and heuristic al-
gorithms to minimize the number of panels we need to
serve the IDN’s load by taking advantage of higher levels
of solar across various regions on the globe. Firstly, we
design our algorithms such that they can be generalized to
different net-zero time periods, including net-zero week,
month, and year. Secondly, we also design the LP to study
the impact of restricting load movement within a certain
radius when determining the number of panels to be
provisioned. Finally, our LP can also be easily configured
to restrict locations where solar panels are installed.

• Extensive Trace-based Evaluation: We evaluate our al-
gorithms on an extensive load trace from one of the
world’s largest CDN. The month-long trace consists of
five-minute information from 100,592 servers in 724
global data center locations from Akamai’s CDN. We see
significant reduction in the number of panels and also
find that our heuristic algorithms perform well compared
to the optimal. Overall, with unrestricted radius of load
movement, we can reduce the number of solar panels by
36% for net-zero year. For net-zero month by about 67%
to 68%, and for net-zero week by about 71% and 74%
for heuristics, and by 82% for the optimal.

In the rest of the paper, we present background and define
the problem in Section II and III respectively. We present our
optimal and heuristic algorithms in Section IV and experimen-
tal methodology in Section V. In Section VI we describe our
empirical results. We discuss related work in Section VII and
finally present our conclusions in Section VIII.

II. BACKGROUND

Internet-scale Distributed Networks: Internet-scale dis-
tributed networks (IDNs) are large global networks that are
comprised of data centers in hundreds of locations across the
world. Content delivery networks (CDNs) are examples of
IDNs and are used to deliver content, streaming audio, video,
applications etc. on the web. Figure 1 shows some data center
locations part of the Akamai CDN. Commercial CDNs use
two levels of load-balancing in their systems: local and global.
When a user requests content, the global load-balancer assigns
the request to a server cluster located ‘close-by’ to minimize
loss and latency [20]. The local load-balancer then maps the
request to a specific server in the cluster. In order to assign
users to nearby data centers and minimize loss and latency,
CDNs replicate their services to have redundancy in the choice
of data centers. This replication is also useful if load from one
data center is assigned to another data center for other reasons,
e.g., to leverage a local feature like high solar output.

Energy Consumption Model for an IDN: The primary
source of energy consumption in IDNs are the numerous
servers deployed in all the various data centers (server energy).
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Fig. 1: Plot showing the diversity in geographic locations that
can make up a global IDN

The energy consumed by a server is largely dependent on the
amount of load it is serving, so we can model the energy
consumed by a server as a function of its load (we use
normalized load λ, 0 ≤ λ ≤ 1, which is the actual load as a
fraction of its capacity). However, although energy consumed
is largely dependent on the load, servers are not energy
proportional and still consume some energy, roughly 60%,
when they are idle. For our work, we use the standard linear
model of server power consumption [3] that defines power
consumed by a server as Pidle+(Ppeak−Pidle)λ, where λ is
the normalized load on the server, Pidle is the power consumed
by server that is idle, and Ppeak is the power consumed by
the server that has peak load. We assume that we can move
load between servers to consolidate load, and shut down idle
servers, so as to use the minimum number of servers needed to
serve the load [15]. Our assumption is that such consolidation
of load is done at each of the data center locations for each
time period. Using the linear model and consolidating load
between servers, we then determine the power consumed by
the data center. The power consumed (in watts) by the data
center in each 5-minute time interval is then multiplied by the
number of seconds (5*60) to get the energy consumed by the
data center in each time interval (in joules).

In addition to server energy, we also need energy to cool
them (cooling energy). Heat dissipated by servers is a function
of the energy they consume. The more heat they dissipate, the
more energy is needed to cool them. So cooling energy is
proportional to server energy. A recent study of data center
energy consumption [21] showed that servers and cooling
consumed 56% and 30% of the total energy respectively. Thus,
most of the energy consumed by a data center is spent to power
and cool servers. We assume a PUE of about 1.8 [28] and scale
up server energy consumption to account for cooling energy.

Net-zero Systems: A ‘net-zero energy’ data center is de-
signed and managed in a manner that uses on-site renewables
to entirely offset the use of any non-renewable energy from
the grid [8]. That is, on-site renewable energy produced is
at least the energy consumed over the period. Extending this
basic definition, we define a ‘net-zero’ IDN for different time
periods as below:

• A Net-zero Year IDN is net-zero over a year.
• A Net-zero Month IDN is net-zero for every month in a year.
• A Net-zero Week IDN is net-zero for every week in a year.

By definition, net-zero week is the most stringent requirement,
followed by net-zero month, and finally net-zero year. So a
net-zero week IDN will also be net-zero month and net-zero



year. A net-zero month IDN will also be net-zero year.
Solar Panels and Factors Affecting Solar Output: A

solar panel is an electrical device that converts sunlight into
electricity using the photovoltaic effect [22]. Several factors
affect solar output, and we list some of them below:
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(a) Annual solar output showing
large variation across locations
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(b) Monthly solar variation by sea-
son in a northern hemisphere location
(Seattle)
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(c) Monthly solar variation by sea-
son in a southern hemisphere location
(Perth)
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(d) Daily solar variation for two
close-by locations

Fig. 2: Figure showing rich solar variations across the globe

• Location: As shown in Figure 2(a), there is a large vari-
ation in annual solar output based on location. Locations
like Las Vegas have higher annual solar output, while
locations like Anchorage have lower solar output.

• Season: Solar output also varies by season. Summer
months tend to have higher levels of solar output than
winter months. This can be seen in Figure 2(b) which
shows the monthly solar output for Seattle, WA.

• Hemisphere: Figures 2(b) and 2(c) show monthly solar
output for Seattle (northern hemisphere) and Perth (south-
ern hemisphere). As we see, the trend in the levels of solar
output is reversed for these locations, given the northern
and southern hemispheres experience opposite seasons.

• Daily variations: Solar output goes to zero when the sun
is not shining and so the hour of the day affects solar
output. As Figure 2(d) shows, for each location there are
hours when solar output is zero and then it rises steadily,
peaks and then falls again once the sun sets.

• Other factors: All other factors like location, season, and
time of day remaining constant, solar output can still
change based on several factors that may include weather,
cloud cover, pollution etc. As Figure 2(d) shows, within
the same location, season, hemisphere and time of day,
we see large variations between solar output from one day
of the week to the next. Locations that are close-by e.g.
Portland, OR and Seattle, WA also show large variations

in solar output, as we can see in the same figure.
Given the above analysis, we conclude that solar output is

highly variable across time and space and is affected by several
diverse factors, and their interplay. While this intermittency
and variability is a challenge, it is also an opportunity in
the context of a global IDN. Given an IDN has replicated
services, we can leverage high levels of solar by moving load
to locations that have high solar output. In our study, we
leverage these complex variations to reduce the number of
panels provisioned.

III. PROBLEM STATEMENT

Data centers consume energy to maintain, run, and cool
servers and other equipment. For a net-zero data center, energy
supply needs to be matched by the demand by using energy
generated from renewables, like solar. There is a large variation
in solar output across global locations, with certain locations
being excellent for solar generation. In this paper, we address
the problem of efficient solar panel provisioning for global net-
zero IDNs. To provision panels efficiently, we move load to
locations with high solar output. While defining the problem,
we make three simplifying assumptions. First, we assume that
it is possible to install as many solar panels as we need in any
location. Second, we assume that it is possible to deploy as
many servers as we need at any location. Finally, our approach
assumes that the total energy produced over the net-zero period
is greater than or equal to the total energy demand. That is,
we assume that excess energy production can be net-metered
to the grid, or stored locally, and consumed at a later time.

Our provisioning problem can be broadly stated as follows:
Using load movement, how can we efficiently provision solar
panels for a global IDN so it is net-zero over a given time
period such as a year, a month, or a week. Importantly, being
net-zero over a certain period implies total energy used in that
period across the IDN equal total solar output for the IDN. It
does not require instant power usage to be fully met by solar
production at that instant.

Specifically, we study the following research questions:
• How to achieve net-zero IDNs with and without perfor-

mance constraints: Firstly, in order to determine our
full solar potential, we analyze how much reduction we
can see in the number of panels if we allow load to be
assigned to any location on the globe, without worrying
about performance. This scenario yields best case results
for reduction in the number of panels, and becomes a
point of comparison for results under more constrained
scenarios. Secondly, in order to reduce latency, it is
important to serve load from locations close to users.
Therefore, we place constraints on the radius within with
we must operate while moving load to a data center with
higher solar output. Although we do not explicitly add a
relocation penalty, we do address latency by constraining
load movement within certain radii.

• How do results change if panels are assigned to top
k locations only: Solar panel installation may only be
possible in large data centers in major metro areas. We



dcid/time 1 2... n

1 l11 l12... l1n
2 l21 l22... l2n
.. .. .. ..
m lm1 lm2... lmn

total load l1 l2... ln

TABLE I: Demand Matrix

dcid/time 1 2... n

1 s11 s12... s1n
2 s21 s22... s2n
.. .. .. ..
m sm1 sm2... smn

TABLE II: Supply Matrix

analyze the number of solar panels needed to make IDNs
net-zero if the panels could only be deployed in large data
centers in major cities. For an IDN, data centers sizes
vary by location and population. Generally speaking,
areas with larger population tend to have larger data
centers so servers can be proximal to users in order
to reduce latency. We use the number of servers as an
indicator for the size of the data center. In this scenario,
we sort our data centers by the number of servers they
have and consider only the top k locations as candidates
for installing panels, ensuring panels are installed at
bigger data centers. We study how the number of panels
provisioned change as we vary k.

IV. ALGORITHMS FOR SOLAR PROVISIONING IN IDNS

We begin with an LP formulation to solve the solar
provisioning problem under performance constraints. While
the LP formulation is optimal, it is also computationally
intensive. Therefore, to reduce run-time complexity in the no
performance constraint scenario, we also define two heuristic
algorithms that run faster while yielding comparable results.

Before defining the algorithm, we first define the main
inputs to the algorithm.
• Demand and Supply Matrices: We set up the inputs as

two matrices: one a demand matrix (shown in Table I) and
the other a supply matrix (shown in Table II). The values
in the demand matrix ‘lij’ represent the energy used by
the data center at the corresponding time. The values
in the supply matrix ‘sij’ represent the solar energy
available at that location per panel. Both matrices have
‘m’ rows corresponding to data centers and ‘n’ columns
corresponding to time periods.

• Neighbors of a data center ‘i’: We define Niδ to be the
set of all data centers within a radius of δkms from i.

A. Optimal LP Formulation with Performance Constraints

We formulate an LP, which we refer to as LPperf , to
determine the minimum number of panels we can provision
to meet demand, given the solar energy available at various
locations. In addition to the inputs defined above, for each

data center i, we define variables lijt to be the load moved
from datacenter i to datacenter j, at time t, ∀j ∈ Niδ . We
also define pi as the number of panels installed at data center
i. Given this setup, we define the LP as shown below. We
minimize the total number of solar panels provisioned in the
objective function as below:

Min:
m∑
i=1

pi (1)

We then define constraints as below: Incoming load should be
less than or equal to the solar supply:

s.t.:
∑
i∈Njδ

lijt ≤ sjt ∗ pj , ∀j, t (2)

Total outgoing load, including load moved from the data center
to itself should be equal to the starting load:∑

j∈Niδ

lijt = lit, ∀i, t (3)

In addition to these constraints, we also have non-negative
constraints for each of the variables defined:

lijt ≥ 0, ∀i ∈ Njδ,∀j, t (4)
lit ≥ 0, ∀i, t (5)
sjt ≥ 0, ∀j, t (6)
pj ≥ 0, ∀j (7)
δ ≥ 0 (8)

Without performance constraints, i.e. for an unlimited radius
of load movement, where load can potentially be assigned
from a data center to any other data center, the number of
lijt variables and associated constraints, becomes very large.
For net-zero month, for m data centers, the number of lijt
type variables is 12m2. Therefore, we devise an alternative
LP formulation for the no performance scenario.

B. Optimal LP Formulation With No Performance Constraints

In this section, we do not consider performance constraints
in our formulation. In addition to the inputs and variables de-
fined earlier, we define init as the load moved into datacenter
i at time t. Similarly outit is the load moved out of datacenter
i at time t. Given this setup, we define the LP, referred to as
LPnperf , as shown below. We minimize the total number of
solar panels installed:

Min:
m∑
i=1

pi (9)

Subject to four types of constraints: Total incoming load minus
the outgoing load should be zero:

s.t.:
m∑
i=1

init −
m∑
i=1

outit = 0, ∀i, t (10)

Incoming load should be less than or equal to the solar supply:

lit + init − outit ≤ sit ∗ pi, ∀i, t (11)



Total outgoing load should be less than or equal to the sum
of the starting load and any incoming load:

lit + init − outit ≥ 0, ∀i, t (12)

In addition to these constraints, we also have non-negative
constraints for each of the variables defined:

lit ≥ 0, ∀i, t (13)
sit ≥ 0, ∀i, t (14)
pi ≥ 0, ∀i (15)
init ≥ 0, ∀i, t (16)
outit ≥ 0, ∀i, t (17)

The LPnperf does away with the lijt type variables that
represent load moved from data center i to data center j at
time t. Instead it only models load moved in and out of each
data center at time t using variables init and outit. So for
the net-zero month case for m data centers for LPperf , where
we had to contend with 12m2 variables, we now only have to
work with 12m variables for the LPnperf formulation.

Theorem 1. LPperf for unlimited δ and LPnperf are equiv-
alent.

Proof: We prove equivalence by showing that a solution
for the first formulation with unlimited δ is also a solution for
the second and vice versa. We omit the detailed proof due to
space constraints, and refer the reader to the extended version
of this paper [12].

C. Greedy Heuristic Algorithms

Optimal LP formulations may be computationally very
expensive for large system sizes, so we also develop efficient
heuristics. We describe below our heuristic algorithms that are
inspired at a high level by greedy approximation algorithms to
the the set-covering problem [6]. We loosely consider the load
to be served as the set to be covered. The different amounts
of load we can serve using solar energy generated at various
locations are like the subsets that can cover the original set.

1) Max Solar Per Panel Heuristic (MSP): We now define a
greedy heuristic algorithm that performs comparably and runs
faster than the LP. For example, for the no performance net-
zero week case, the heuristics took a few seconds to complete,
while the LPnperf took over 2.25 hours, LPperf for r=200kms
ran for over 10.5 hours, and LPperf for r=700kms did not
complete even in 28 days. We use the same demand and supply
matrices that we defined earlier in Section IV. In order to
minimize the number of panels, we note that we need to assign
as much load as we can to a location that has the highest solar
output. This would help us to cover the maximum load with the
minimum number of panels for a given time slot. We greedily
pick the maximum solar per panel location across time and
space (i.e. across all time periods and all data centers), and
assign the entire load for the time period to that location.
Using the solar per panel value and the load, we determine
the number of panels to place at that location. Once we install
panels at a location, these panels can then be used to serve

demand for other time periods as well, so we accordingly
adjust the demand values to reflect the extra supply for all
other time periods. We continue to place panels in this way
until we satisfy the entire demand in all time periods. For
pseudocode, please see Algorithm 1.

Algorithm 1 MSP Heuristic Pseudocode
1: function SPHEURISTIC( )
2: time← [t1, t2, ..., tn] . time periods
3: spp← [s11, s12, ..., smn] . solar output
4: load← [l1, l2, ..., ln] . load for time period
5: provpanels← [] . provisioned panels
6: for ty in time do
7: sxy ← min sij s.t. sij ∈ spp . pick min solar
8: pxy ← ly/sxy . assign panels
9: provpanels← provpanels ∪ [pxy ] . add to provisioned

panels
10: for i in [1, 2, ...,m] do
11: li ← |li − ly | . adjust other loads
12: load← load− ly . delete assigned load

return provpanels

2) Min Number of Panels Heuristic (MNP): We now de-
scribe our second heuristic algorithm. The basic structure of
this algorithm is the same as the MSP algorithm, except we
now use a different heuristic to make a decision on where
to place panels. We first determine the number of panels
for each location for each time period, by dividing the load
for the time period for all locations, by the solar per panel
for the corresponding time and location. This gives us the
‘Number of Panels Matrix’ shown in Table III. We then pick
the lowest number of panels value and install those many
panels at the corresponding location and time period. Like
before, once any panels are installed at a location, they are
also available for other time slots. So we accordingly adjust the
demand to reflect the extra supply. We recompute the number
of panels matrix for the adjusted loads, and start over. We do
this exercise until all the demand is met. Pseudocode for this
algorithm is detailed in Algorithm 2.

Algorithm 2 MNP Heuristic Pseudocode
function NPHEURISTIC( )

time← [t1, t2, ..., tn] . time periods
spp← [s11, s12, ..., smn] . solar output
load← [l1, l2, ..., ln] . load for time period
origpanels← [] . original panels
provpanels← [] . provisioned panels
for sij in spp do

opij ← li/sij . determine original num panels
origpanels← origpanels ∪ [opij ] . add to original panels

for ty in time do
opxy ← min opij s.t. opij ∈ origpanels . pick min panels
pxy ← ly/sxy . assign panels
provpanels← provpanels ∪ [pxy ] . add to provisioned panels
for i in [1, 2, ...,m] do

li ← |li − ly | . adjust other loads
load← load− ly . delete assigned load
time← time− ty . delete time column
origpanels← [] . reset original panels
for sij in spp do

opij ← li/sij . determine num panels
origpanels← origpanels ∪ [opij ] . add to panels

return provpanels



dcid/time 1 2... n

1 p11 p12... p1n
2 p21 p22... p2n
.. .. .. ..
m pm1 pm2... mn

TABLE III: Number of Panels Matrix

Parameter Value
Loss % 14

System Capacity 0.275 kW
Module Type Standard

Timeframe Hourly
Azimuth 180 deg for northern hemisphere and 0 for southern

Tilt Absolute value of latitude
Dataset ‘TMY2’ for US Locations and ‘Intl’ for others

TABLE IV: Parameters for PVWatts Data

V. EXPERIMENTAL METHODOLOGY

We conduct experiments on an extensive Akamai load trace
spanning a month. The trace consists of load information
from 100,592 servers in 724 global data center locations as
shown in Figure 1. The dataset includes load, requests, and
bytes served by each server every five minutes over a month-
long trace. Further, it has detailed information about every
data center, including the number of deployed servers, total
server capacity, and the location of the data center including
its latitude, longitude, city, state, and country.

For solar energy data, we use the PVWatts [23] hourly
data of AC energy generation from solar radiation for a year.
Assuming the power rating for solar panels is between 200
watts and 350 watts [7], we take an average value of 275
watts as the power rating per panel. Therefore, we use a
system capacity of 0.275 kW for PVWatts in order to get the
output generated by a single panel. For simplification, for all
other required solar parameters, we use the values listed under
‘Default Values’ on page 3 in the PVWatts version 5 manual
[24]. The required parameters used for downloading PVWatts
data are detailed in Table IV.

The trace has 5-minute readings, whereas solar data is
hourly. So we make an assumption that solar data does not
change much during the hour and use the hour’s reading for
each of the five minutes that fall within that hour. Also, we
have solar data for a year, but load trace data for a month. We
assume that the load pattern for the CDN repeats monthly for
the year. For each five minute interval, we convert load and
solar output power (in watts) into energy units (joules).

For baseline comparison, we use the number of panels we
need to serve the IDN load without any load movement. E.g.
for net-zero week, for each week, we divide the week’s load
for the data center by the corresponding week’s sum of solar
per panel values. We then determine the number of original
panels as the maximum of all the weekly number of panels.

VI. EMPIRICAL RESULTS

The following paragraphs describe our results for scenarios
where we restrict load movement within certain fixed radii (im-

posing performance constraints), where we allow unrestricted
load movement (without any performance constraints), and
when panel provisioning is restricted to top k locations.

A. With and Without Performance Constraints

The goal of this experiment was to study the impact of load
movement within a radius on the reduction in the number of
panels when compared to the two extremes of unrestricted load
movement and no load movement at all.

1) Number of Panels: Our results are shown in Figures 3(a)
and 3(b). We list our observations below:
• Heuristics perform comparably: From Figure 3(a), we

see that for an unlimited radius of load movement, the
heuristic algorithms perform comparably with the LP.

• Load movement helps reduce the number of required pan-
els dramatically: Figure 3(a) shows that with an unlimited
radius, for net-zero year, number of panels decrease by
36% for all algorithms. For net-zero month, the MNP
decreases panels by 66.94%, the MSP by 67.03%, and the
LP by 68%. For net-zero week, the MNP decreases panels
by 71.4%, the MSP by 73.7%, the LP by 82%. Figure
3(b) shows that even with performance constraints, we
can see a significant reduction in the number of panels.
For r=500kms, we see a reduction of about 9.7%, 27%,
and 53% for net-zero year, month, and week respectively.

• Number of panels is inversely proportional to size of net-
zero time window: Figure 3(b) shows that the number of
panels provisioned is highest for net-zero week, followed
by net-zero month, followed by net-zero year. This is
intuitive given we are averaging over a larger time period
for net-zero year as compared to net-zero month. For net-
zero year, we must match demand with supply over the
entire year. For net-zero month we must match demand
with supply for each month, however low our supply
maybe and however high our demand may be for various
months. Therefore, we must satisfy our net-zero condition
for the ‘worst’ month in our list. Similarly for net-zero
week. Therefore, the number of panels increase as we
move from net-zero year, to net-zero month, to net-zero
week. In Figures 3(b) and 3(c), missing bars for net-zero
week correspond to input parameters for which LPperf
was computationally too intensive.

2) Number of Locations: We study the number of locations
where solar panels are provisioned by radii for different net-
zero time periods. Our results are show in Figures 3(c) and
3(d). Our main observations are:
• Number of locations decrease with increase in radius:

Figure 3(c) shows that with an increase in the radius
of load movement, the number of locations where solar
panels are allocated decreases for each net-zero time
period. This is because as the radius increases, load
converges to locations that are globally high for solar
output. Figure 4 shows locations that are chosen for
various values of max radius for net-zero month. With
load movement, we see the locations shrink and converge
to the hubs for solar generation.
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Fig. 3: Results with and without performance constraints

• Number of locations is inversely proportional to the size
of net-zero time period: Figure 3(c) also shows that the
number of locations are the maximum for net-zero week
followed by net-zero month, and then net-zero year. Net-
zero month and net-zero year are closer in the number of
locations they pick. Figure 3(d) shows the distribution of
panels for a radius of 500kms for different net-zero time
periods. We observe that for all the net-zero time periods,
panels are fairly evenly distributed with a few high peaks
lying between about 12% and 16%.

With unconstrained load movement we observe that, for all
the algorithms, load is moved to locations that are high in solar
output. However, with these choices we find that load can end
up in remote locations where solar panel installation may not
be feasible. To address this, we restrict solar panel installation
to locations having large data centers in major cities.

B. Restricting Panels to Top K Data Centers

We use the number of servers in a data center as the proxy
for data centers that are large and are located in non-remote
places with large populations. We restrict panel provisioning
to top k locations sorted by the number of servers. Figure 5
shows the change in the number of panels across different
values of k. We list our observations below:
• Number of panels provisioned varies inversely with k:

First of all, we see that the number of panels provisioned
increases when we restrict ourselves to fewer locations.
This is intuitive considering that we are operating with
more constraints, and therefore are not able to extract
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Fig. 5: When restricting panel provisioning to top k data
centers, the number of panels provisioned are highest for net-
zero week, followed by net-zero month, and finally net-zero
year

as much reduction from solar output as we could in an
unconstrained setting. The larger the k, the more locations
are in play for extracting solar savings.

• Number of panels vary inversely with the size of the net-
zero time window: Once again, we see that the number
of panels provisioned is the most for net-zero week,
followed by net-zero month, and finally net-zero year.
This trend is preserved across different values of k. See
Section VI-A1 for a detailed explanation.

• k=500 balances both panel optimization and top-k re-
quirements: For k=500, the number of panels are very
close to the no performance panel provisioning scenario.
Therefore, restricting panels to the top 500 data centers
is a good middle ground for installing a near-optimal
number of panels at non-remote locations.

VII. RELATED WORK

Recently, there has been a lot of research on reducing
or greening energy consumption in data centers, including
solutions focused on shutting down servers or clusters during
off-peak periods and/or using low-power consumption states
instead of powering them off in order to prevent wear and tear
[16] [19] [5] [26]. Though these solutions provide significant
savings in energy, they do not deal directly with the use of
green energy to power data centers. Separately, a lot of work
has been done in the area of renewables for data centers.
Previous work has also looked into providing a solution for
selecting sites for and provisioning green data centers using
a follow-the-renewables approach [4]. However, their work
focuses on setting up a data centers from scratch, where as
our work explores how to use renewables to green an existing
IDN. Work has also been done on job scheduling within a data
center based on predicted solar and brown energy prices [11]
[10]. Previous work has also modeled the potential of using
renewable energy for data centers located in colder locations
[27], while [14] proposes a solution for data center expansion
using modular solar panels and distributed battery systems to
have near-zero environmental impact. While this work takes
advantage of renewables to reduce energy consumption, it
does not deal with efficient provisioning of solar panels for
an existing global IDN. Moving load across data centers to
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Fig. 4: Locations where the LP with performance constraints places solar panels for net-zero month

increase the use of renewables has been studied before. Studies
have also been done [18] [17] on how and to what extent
geographical load balancing can encourage use of renewable
energy and reduce the use of brown energy. Their distributed
algorithm offers significant savings in cost (including energy
cost and delay cost). Work has also been done on green
solutions that control user traffic and direct it to different data
center locations based on changes in workload and carbon
footprint [9]. However, all these works [18] [17] [9] do not
focus on efficient provisioning of solar panels.

VIII. CONCLUSIONS

We studied the problem of efficient solar panel provisioning
for net-zero IDNs. Using our heuristic and optimal algorithms,
we are able to significantly reduce the number of solar panels
needed for creating net-zero IDNs. Overall, with unrestricted
radius of load movement, for net-zero year, we can reduce the
number of solar panels by 36%, between 67% to 68% for net-
zero month, and for net-zero week about 71% and 74% using
heuristics, and 82% using the optimal. We also show that if
we restrict the radius of load movement, we can achieve a
significant reduction in the number of panels for all net-zero
time periods. For instance, for r=500kms, we see a reduction
of about 9.7%, 27%, and 53% for net-zero year, month, and
week respectively. We saw that restricting to the top 500 data
centers is a good middle ground for achieving near-optimal
number of panels installed at major data center locations. In
conclusion, we demonstrated that by leveraging locations with
high solar output, we can significantly reduce the number of
panels needed to serve load and achieve net-zero status for
global IDNs. For this paper, we assumed a constant PUE value
across different locations; however, cooler environments may
have lower PUE values. As future work, we plan to study if
we can combine renewables like solar and open air cooling to
develop even more efficient solutions for greening IDNs.
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